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Abstract — A polarization integral equation is advanced for use in the
conceptual and numerical analysis of a broad class of integrated dielectric
waveguiding systems. The equation is applied to axially uniform wave-
guides, in which case the axial integral becomes convolutional in nature,
prompting a Fourier transform on that variable. Inversion of the trans-
formed guiding region field, aided by complex analysis, allows identifica-
tion of two components of that field: the surface-wave modes and the
radiation field. These are found in terms of the sources exciting the system,
leading to a new formulation for the excitation of such waveguides.
Analysis of the behavior of the kernel of the transformed integral equation
in the complex plane leads to a general criterion for surface-wave leakage
from the guiding region. Numerical results for the propagation characteris-
tics of step- and the graded-index rectangular strip and rib waveguides are
obtained from the integral equation by application of the method of
moments and by a quasi-closed-form solution technique. These results are
compared to those of other formulations. Further application of the integral
equation is discussed, and several promising areas for further study are
identified.

I. INTRODUCTION

HE PRACTICAL APPLICATION of dielectric wave-

guides in millimeter-wave integrated circuits depends
critically on the propagation characteristics of these wave-
guides. For this reason, there has been enduring interest in
methods of determining these characteristics for practical
dielectric waveguiding structures. Exact solutions for the
fields in dielectric waveguides exist for few structures, such
as the asymmetric slab waveguide [1] and uniformly clad
dielectric fibers of circular and elliptic cross section [2].
The boundary conditions at the core/surround interface
for other structures are inseparable, rendering differential
formulations of the problem insolvable.

Differential formulations have provided the basis for
approximate solutions, notably for surface waves along
rectangular step-index waveguides. The technique used in
the classic study by Marcatili [3] yields good results with
minimal effort for large step-index rectangular guides. A
potentially exact solution for this structure has been ob-
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tained by Goell [4]; however, time and storage considera-
tions yield approximate numerical results. A similar diffi-
culty holds for the potentially exact mode-matching tech-
nique of Peng and Oliner et al. [5], [6]. The radiation field
of the guide is addressed in that work, but the spectrum of
radiation eigenvalues is quantized by the introduction of
distant conducting boundaries, leading to approximate re-
sults. Shortcomings common to the above-mentioned
analyses are their inability to incorporate core grading and
inapplicability to structures of more general shape. These
considerations are of practical importance since waveguid-
ing characteristics may improve with transverse core grad-
ing, and fabrication technology renders the construction of
rectangular step-index waveguides difficult at best.

In this paper, we utilize a polarization integral equation
(EFIE) to analyze a broad class of integrated dieletric
waveguides. This integral equation is related to that de-
rived by Katsenelenbaum [7] and used by Livesay and
Chen [8]. It was developed by Johnson and Nyquist in [9]
and provides a conceptually exact formulation of the elec-
tric field in a broad class of integrated waveguiding sys-
tems. The integral formulation provides several advantages
over conventional differential formulations. Boundary con-
ditions are incorporated in a general manner into the
dyadic Green’s function kernel; thus, physical phenomena
such as mode leakage which may be obscured in conven-
tional formulations (see [S] and [6]) can be treated. The
formulation is also valid for arbitrarily-graded waveguides
of arbitrary shape.

The remainder of this paper is organized into four
sections. In Section II, we briefly sketch the development
of the polarization integral equation and present the dyadic
Green’s function which forms the kernel of the equation.
We then specialize the integral equation to axially uniform
waveguides by Fourier transforming on the axial variable.
In Section III, we develop an excitation theory for axially
uniform integrated dielectric waveguides. This theory is
based on formal Fourier inversion of the unknown trans-
formed waveguide field. Analysis of the EFIE in the com-
plex transform variable plane allows characterization of the
complete modal spectral of this class of waveguides: Surface
waves are associated with a residue series at poles enclosed
by the inversion contour, and the radiation field is associ-
ated with branch integrals required by the presence of
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multivalued parameters in the integrand. The surface waves
are shown to satisfy the homogeneous form of the trans-
formed EFIE, and the radiation field is shown to consist of
a two-dimensional superposition of spectral components
which satisfy a forced EFIE. This analysis provides the
excitation amplitudes of the surface-wave modes and the
radiation field spectral components in terms of the incident
excitatory field. Another important result is the ability of
this analysis to describe the physical phenomenon of guided
mode leakage [5], [6]. In Section IV, we apply the integral
equation to the determination of propagation characteris-
tics of step- and graded-index rectangular waveguides. Two
techniques are used: we implement a moment method
solution to the integral equation, and we also use a quasi-
closed-form solution technique. Numerical results are pre-
sented and compared to those of other formulations. We
close, in Section V, with a discussion of our applications of
the polarization integral equation, and several promising
areas for further study are identified.

II. MATHEMATICAL FORMULATION

In this section, we present a polarization electric-field
integral equation for a generalized integrated dielectric
waveguiding system. This integral equation provides the
mathematical formulation for the remainder of this paper.

The physical system that the EFIE is applicable to is
depicted in Fig. 1. It consists of an inhomogeneous dielec-
tric waveguide core located in the top layer of a three-layer
uniform dielectric background region intended to represent
the substrate, film, and cover regions of typical integrated
dielectric waveguides. Excitation is provided by an im-
pressed electric field £/ maintdined by current Je= jwP®
associated with a primary polarization source P¢ immersed
in the cover region of the layered background. That im-
pressed field is scattered by the inhomogeneous guiding
region, due to the contrast 8n%(¥)= n*(¥)— n? of its re-
fractive index against that of the uniform cover, resulting
in a scattered field E s, The total field at any point in the
system is E = E'+ E°. The scattered field is maintained by
the equivalent induced polarization Pe =8n? (r)eOE (¥).
Solution of this scattering problem requires the determina-
tion of E at all points 7 € V, where V is that region where
8n? # 0. The polarization sources radiate in the presence of
the tri-layered cover/film/substrate background region;
treatment of this problem involves the electromagnetics of
layered media.

The field maintained by the total effective polarization
in the cover region can be expressed through electric
Hertzian potentials by a generalization of Sommerfeld’s
classic method [10}. The result is

Pe(7')+ B o(7')
€C

v’
(1)

where k,=n ,kO for I=¢, f, or s for the cover, film, or
substrate regions, respectively, and k, is the free-space
wavenumber. Here E’ is the impressed field maintained by

E(7)=(k2+vv-) [ G(AF)
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Fig. 1. Generalized integrated dielectric waveguide consisting of an
arbitrarily graded waveguiding region adjacent to a film/cover inter-
face over a uniform substrate.

Pe, E * is the scattered field maintained by P. = &n’%,E,
and G is a Hertzian potential Green’s dyadic. Rearrangmg
(1) leads to an EFIE for the field maintained in the
waveguide by the impressed field E* as

2( 5

E(F)~(k2+vv-)f Sn ) (2’ ) G(7I7)

v on:

E(7)dv’'=EYF), FeV. (%)

An alternative form of EFIE, (2) is useful in analytical

developments; it is obtained in terms of an electric Green’s
dyad G.. If the differential operator in (2) is passed through
the integral to operate on G, the singularity of the Hertzian
potential Green’s dyad is rendered nonintegrable and in-
tegration must be performed in the principal value sense.
This resulis in the introduction of a nonphysical source due
to exclusion of the principal volume which must be subse-
quently subtracted by use of a depolarizing dyad L [11].
These considerations lead to the definition of the electric
Green’s dyad

G (7IF)

An alternative forin of the EFIE for E excited by E' is
thus

=PV(k2+v v )G(A7)+Ls(7-7). (3)

=, 8 2(y - SN =2, =,
E(r)—/ #)—Ge(r'lr’)ﬂ(r’) dv'=E'(7),
N (O .
rev. (4)
The Hertzian potential Green’s dyad decomposes into a
principal and reflected part G = G” + G, where
Gr (A7) =167 (77)
5’(7|7’) =XG/x+ iG’fc +Gly+ iG’E} +2G)%.
t a x 4 n 8 z C t
(5)
Potential components tangential to background interfaces
excited by tangential sources are described through G, and
normal potentials due to normal sources are obtained from

G,, while the coupling component G/ yields the normal
potential maintained by tangential sources. The various
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Fig. 2. Axially uniform integrated dielectric waveguide in a tri-layered
background environment.

components of the Green’s dyad are found in terms of
Sommerfeld integrals

T @RGP gmpdy =yl e~ IkIP7
G (7|7") = AN ="
(=] 2027) 7, dmlF— 7
GI(AF)) o (RN s ,
A=) =Py +y")
(A7) = [ (RN S a4 @
ai(rr)) 2 Le) P

where X =£8 + {2, N2 =£2+({2 d?A=d¢d¢, and p? =N
—k}? for I=c, f, or 5. The reflection coefficients R, and
R, are associated with tangential and normal potential
components, while C is a coupling coefficient; these coeffi-
cients depend on the parameters of the cover/film/sub-
strate background in a complicated manner, as indicated in
the accompanying Appendix.

In case of an axially uniform guide such as that shown in
Fig. 2, the refractive index contrast factor is a function of
transverse position only, or 8#*(7) = 8rn*(5) with § = x% +
yp. We also note that G(7|F’)=G(p|p’; z—z’); in this
case, the axial integral in (2) is convolutional in nature,
prompting a Fourier transformation on that variable. This
leads to an EFIE for the transformed field € of an axially
uniform waveguide due to a transformed impressed field ¢’

é(5,8) - (k2+vv:)

2 (B) .,y o
D 1) (.5 a5 215,

geCS (7)
where ¢ is the transform variable and v = v, + jis.
The transformed Green’s dyad g, decomposes as previ-
ously, with

g(pID)=gr(BIF)+ 5 (pl7),  Er=Tg¢

roa
Z.
c

(8)

Integral representations of the scalar components are given

S 21 Lol A a r o3 roa : rs 5
B (01F) = 2y % + 9\ 55 &tk + 8L P + S8t |+ 28

by

gt (p19) = [

- 00

0 @E(x=XxN)o=pcly =yl 1

4ap, iy

Ko(v.l5 - 7))

g;,(ﬁ |5/)

(o]
g,.(818) )= [ {R,(N)
gt(BIF')
with M =¢2+¢2 y2=¢2—k? and p7=N—k} for =
¢ f, .

The integrals in (9) can be transformed to alternative
forms by complex plane analysis. For fixed {, the p,
introduce branch point singularities in the complex £ plane.
If the real axis integrals are closed along semicircles of
infinite radius in the upper or lower half planes, it is
necessary to detour along branch cuts emanating from
points =+ jvy; these cuts follow the usual hyperbolic paths
in the ¢ plane (see [12], [13]) to guarantee the vanishing of
contributions from the infinite semicircular path. It can be
shown [12] that the coefficients R,, R,, and C in (9) are
singular at such § where the p, correspond to TE and TM
surface-wave eigenvalues of the background asymmeiric
slab waveguide (see discussion in Section III). These con-
siderations lead to useful alternative representations of the
Green’s function components in terms of a residue series at
these poles plus branch integral contributions.

It is convenient in conceptual developments to exploit a
modified version of EFIE (7). An alternative transformed
EFIE is obtained as

P 2( > - . .
é5.0- [ 2 ) (s.6) as'

e/E(x XY= (y+y")

(©)

4mp,

=&'(p,§), peCs (10)

where the transformed electric Green’s dyad is §,.(5|p") =
PV(kI+VV-)g(PP)+I8(F—7) and [ is the two-
dimensional depolarizing dyad [11].

III. TRANSFORM PLANE ANALYSIS

In this section, we consider the excitation of axially
uniform integrated dielectric waveguides. The analysis is
based on formal Fourier inversion of the transformed total
field in the waveguide.

The total field in the core of an axially uniform in-
tegrated waveguide is given by

B2 =5, [  emoera
where €(p, {) satisfies (10). We will perform this inversion
with the aid of complex analysis. Modify the real line
integral in (11) to form a closed path in the complex ¢
plane. An infinite semicircular contour €, extends into
the upper or lower half plane depending on the sign of
z — z’, as illustrated in Fig. 3. Since & is the solution of
(10), it shares the { plane branch point singularities of g,
arising from the p, = (§2 +§* ~ k})"/* for [=c or s (k, is
not implicated since the integrands of g} are even in P
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Fig. 3. Singularities of the transformed core field and the deformed
“inversion contour to aid in identification of the model spectrum of an
integrated waveguide.

see the Appendix). We choose hyperbolic branch cuts
eminating from the branch points { = + k, to assure con-
vergence along %,. The contour may also enclose pole
singularities of € at { = {,. We thus have

N A I
E(P,Z)=ﬁ{ﬁjzR{eS[e(P,f)e’g]
r 7

-j%é(ﬁ,{)eﬂzdf}. (12)

Equation (12) gives a natural decomposition of the field in
an axially invariant integrated dielectric waveguide. The
residue series of (12) is a sum of surface-wave modes of the
guide, complete with excitation amplitudes depending on
the incident excitatory field or current. These surface waves
satisfy the homogeneous form of the EFIE (10), as we
would expect by the conventional definition of surface
waves. The branch integral terms in (12) are a continuous
superposition of forced radiation field spectral components
of the waveguide. They involve spectral excitation ampli-
tudes depending on the incident excitatory field or current
and are the subject of a later discussion. Closed-form
solutions to the integral equation (10) have been obtained
for TE and TM fields supported by the asymmetric slab
waveguide [12]; subsequent application of the complex
plane analysis described above leads to replication of the
surface-wave modes and radiation field, including all exci-
tation amplitudes, as detailed by Marcuse [1].

We now show that the terms in residue series of (12)
satisfy the homogeneous form of the transformed EFIE
(10). Suppose that the inversion contour of Fig. 3 encloses
a simple pole of the transformed field at ¢ »- Near this pole,
the transformed field has the form €(p,{)=a,€,(p)
(§—¢,)7"; substitution into (10) gives

o (6=5)" - [ 2

$ 2{ > o
z (zp)g)e{(p!p’)

-&,(p)ds’'} =2'(p,¢). (13)

Taking the limit as { —{, and noting that €’ is arbitrary,
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we conclude that é’p satisfies

= 8}12 BI & =12 > { = ’
@) [ 2, (516) 2, () as =0,

(4

oy

pecs (14)

so that &, is a surface wave of the waveguide with propa-
gation constant {,. We now show that & has the form given
above when { p is an eigenvalue of the surface-wave mode
EFIE (14); this demonstration allows evaluation of the
excitation amplitude coefficient a,. Operate on (10) with
the linear integral operator .%,, defined by
8n*(B) (-

L= [ ToaE) (s ()
and use the reciprocal property of the Green’s dyad (see
[13]) to get

(16)

For ¢ near { »» We can approximate the Green’s dyad by the
first two terms in its Taylor series expansion about { -
Substitution into (16) and taking the limit { — ¢, gives

: 8n?(p)
lim (¢ — e(p,
Jim (5 ) [ e 8)

ne

(17)

Since €' is arbitrary, we conclude that &€(p,{)=a,€,(p)
(§—§,)7! for { near {,. This gives

1 8n*(p) .
-1 = (=Y. zi( = 8
a, . fcs 22 g,(p)-€(p,§,)ds  (18)
where ¢, is a normalization constant. This has the same

form as the results of conventional excitation theory [13],
[14]. We can derive an alternate form for the excitation
amplitude in terms of the impressed current maintaining
the excitatory field (see (22))

== [HE®FEL) s (9)

cf.Jcs 4

Now J¢ = jwf’e, and we denote épe‘f§ 7= E; , S0 the result
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can be written

L1
14 jw

fc TS (7 av (20)

(4
which is again seen to be in the same form as the resplt of
conventional excitation theory.

We have made the identification of the branch integral
in (12) with the radiation field of the waveguide. That is

Eano(P) == 32 [ €@ (1)

where & satisfies the forced EFIE (12) for { along the
branch contour %. Spectral components of the radiation
field can be decomposed by appropriate decomposition of
the impressed field ¢

&(5,8) = —— [ 2515
ngeyJcs

)-p(#,8) ds”

——fds"[fé'

"Eocs

pls”; €,¢)-pe(p7,¢) dé

(22)

where CS,, is the infinite cross section, |p| < oo, p¢ is the
transform of the impressed polarization, and g, is the
integrand in the integral representation of §e§. A unit
dyadic polarization point source at locatlon g’ of spatial
frequency £ gives an impressed field g /1 %0 this excites a
dyadic radiation-field spectral component R(p|"” £0

which satisfies the followmg form of the transformed EFIE:

*"u)fa” (#17)

ACEEY NS
=2 (23)

neg

R(p197:£.¢) ds’

Then the total radiation field becomes

E_:RAD(ﬁa Z) ==

fR plo”; €

This result verifies the conjecture [14] that the radiation
field of general open boundary waveguide consists of a
two-dimensional superposition of spectral components ex-
cited by the transformed impressed polarization p°.

We now turn to the phenomenon of surface-wave leakage
from integrated dielectric waveguides. As noted by Peng
and Oliner et al. [5], [6], the tri-layered background struc-
ture of Fig. 1 is itself a dielectric waveguide. The physical
explanation of surface-wave leakage is the coupling of
guided modes of the core to guided modes of the asymmet-
ric slab background structure. Under certain conditions,
such coupling can occur, resulting in energy transfer (or
leakage) from surface waves of the core to surface waves of
the background structure; these waves guide energy away
from the axis of the waveguide. This phenomenon mani-

1 [oe]
o 8z
5 %d{e [0 dt

p(p7.8)ds”. (24)
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Fig. 4. Complex { plane construction defining arguments of the re-
flected Green’s dyad residue series.

fests itself in our mathematical formulation through the
presence of simple pole singularities in the reflection and
coupling coefficients in the transformed reflected Green’s
dyad for complex §. These singularities occur at those §
that cause A = \/_5_ > +¢2 to corréspond with an eigenvalue
of the TE or TM characteristic equation of the background
asymmetric slab guide.

It can be shown that the coefficients R, and C become
singular when the parameters p,, p,, and p, satisfy the
equation

pf(ps pc)
pf +pspc

(25)

tanh p pr=

and the coefficients R, and C become singular when

n}pf( ips + nfpc)

2 Epfz + nfpcps

tanh p, = (26)

which are the characteristic equations of TE and TM
surface waves in the asymmetric slab {1]. Let A, denote a
surface-wave eigenvalue of the background structure A,
must lie in the fourth quadrant of the complex ¢ plane so
that exp(— jA ) represents a decaying outward-propagat-
ing wave. The spatial frequency £ corresponding to this
eigenvalue is §2=A° —{? The factor exp( jélx x') oc-
curring in the re51due series contributions to g7 implies
Im{§,}>0, we we write §, —j\f A Xf+)x From
the construction of Fig. 4, we see that i 1n the low-loss limit
we have two cases

Re{{} <A, arg{{(,}=m
A,<Re{¢} arg{¢,}=m/2. (27)
Then the factor exp(j§,|x — x’|) in g becomes
ejéplx‘“” - e /ElIx—x] (28)
e lElIx—x1

for the two cases. This factor represents a wave propa-
gating in the x-direction in the first case, and an exponen-
tial decay in the x-direction in the second case. The first
case is the regime of leaky modes, in which a surface wave
of the core couples into a surface wave of the background
structure. The second case is the regime of purely guided
modes, where no coupling occurs and the mode is guided
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Re{Z}: Ap regime of purely guided waves
Re{Z}<)p regime of leaking surface waves

—>g

Film layer | Core | Film layer

8 - tan-! Re(Z)
1€ pl

Fig. 5. Surface-wave leakage and leakage angle for integrated dielectric

waveguides.

along the waveguide axis. This situation is illustrated in
Fig. 5

IV. NUMERICAL RESULTS

In this section, we present results of the numerical
solution of EFIE (14) for the eigenmodes of step-index and
graded rectangular strip and rib waveguides. Two tech-
niques are utilized, and the results of each are compared to
the results of other formulations of the problem.

If the rectangular components v=x, y,z of the un-
known field are expanded in a basis set { f,} and sub-
stituted into the surface-wave mode EFIE (14), the spatial
integrals can be performed to give

Ya, (H)W(5.£)=0, peCS. (29)
Application of a testing operator consisting of dot multi-
plication by a vector testing function and integration over

the guiding region cross section gives the MoM system

)3 ﬁlau,,(§>A:':n(§)=o,

m=1,---,N (30)

where the MoM matrix elements are in terms of the
spectral integrals which occur in the expressions for the
transformed Green’s dyad. Solutions {={, of (30) are
obtained as the roots of det[A4)) ({)]=0 for the nth
surface-wave eigenmode; expansion coefficients a,, are
subsequently determined by deleting one of the dependent
equations in system (30), equating the corresponding coef-
ficient to unity, and solving the resulting inhomogeneous
system for the remaining coefficients.

a=x,Yy,2z,
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Fig. 6. MoM solution to transformed EFIE for dispersion characteris-
tics of Ejj surface-wave mode supported by a step-index dielectric
rectangular waveguide.
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Fig. 7. MoM solution to transformed EFIE for eigenfield distribution of
Ef, surface-wave mode supported by a step-index dielectric rectangular
waveguide.

The standard MoM solution was implemented by using
a pulse function basis and delta functions for testing (point
matching). We first present the MoM results for EJ; surface
waves supported by the isolated rectangular step-index
waveguide illustrated in the inset of Fig. 6. The dispersion
characteristics displayed in that figure agree well with those
of Goell’s mode-matching solution [4]. Fig. 7 shows the
resultant dominant-field component e, distribution in the
guiding region for several guide dimensions. The next
example is that of the E}; surface-wave modes supported
by the same waveguide. Once again the dispersion char-
acteristics obtained compare favorably with those of Goell,
as illustrated in Fig. 8, and the resultant dominant-field
component e, inside the guiding region is shown in Fig. 9.
Our final MoM example is that of Ej; surface-wave modes
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Fig. 8. MoM solution to transformed EFIE for dispersion characteris-
tics of EY, surface-wave mode supported by a step-index dielectric
rectangular waveguide.

y
ne T £y mode
T R R T
C = =5
; n / n.=1.0 " accuracy
o O/6=2.0
e g=20
a_ e,
Q - T S -
~ o A v>"
224 \m B-0.6 hly 0.6
= <
£ e B
o 1.2 e o7 12
g ]
o g B=4 0
= 2
e 4.0 ERS
g g B e mox €y mox
£ ]
g
3 06 0 1646
2 o } 22172 o
£ 2 B=20/0) tn-n) g o 1.2 0 0697
5 s 4.0 0 0U61
s
el e e
B St R S e st e S

LSRN L BN S St
0 0.2 0.4 06 0.8 1.0
normol1zed y-coordinate y/b

[

0.0 02 0.4 0.6 0.8 1.0
normal 1zed x coordinote x/a

Fig. 9. MoM solution to transformed EFIE for eigenfield distribution of
EY, surface-wave mode supported by a step-index dielectric rectangular
waveguide.

supported by a graded-index rectangular waveguide in a
uniform surround. Here, the refractive index varies in a
parabolic fashion along the y-direction as indicated in Fig.
10. The resultant dispersion characteristics are compared to
Goell’s results for a step-index configuration of a similar
contrast. The effect of parabolic core grading on the propa-
gation characteristics of this guide is evident. The domi-
nant-field component distribution in the guide is shown in
Fig. 11. Note the anomalous distribution versus y for
guides of low contrast. This may indicate an unexplained
physical phenomenon, or may be a result of numerical
integration inaccuracy (1-percent accuracy was used in all
cases).

Quasi-closed-form solutions to the surface-wave mode
EFIE (14) can be obtained for the surface waves supported
by step-index waveguides with rectilinear boundaries (e.g.,
the strip and rib configurations). The index contrast is
constant within the guiding region and vanishes outside
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that region. Solutions to Maxwell’s equations are con-
structed in rectangular coordinates by exploiting conven-
tional guided wave theory [13], resulting in the longitudinal
TE and TM eigenmodes

sin K, x .
e,(x,y)= {cosx x}[Clcosxvy+C2s1nxyy]

COs G, X '
h(x,y)= { Sinoxx}[Qcosqu +C,sino,y]  (31)

in terms of four unknown amplitudes and three unknown
elgenvalue parameters («, and o, are specified by K2+ K
=02+ 62 =k?—{?). Transverse-field components are ob-
tamed from (31) in the usual manner. Requiring satisfac-
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tion of EFIE, (14) leads to

4
Z Cnm(a)(Kx’ox’g"x’y):O for a=x’y’z’
n=1

recs. (32)
The W, are given by Sommerfeld integrals following
closed-form integration on the primed spatial variables.
Since this formulation is based on a potentially exact
solution to Maxwell’s equations, the component equations
(32) can be matched at four points within the waveguide,
leading to a system of three homogeneous matrix equa-
tions. These equations can be solved simultaneously (e.g.,
by the three-dimensional Newton’s method) to yield the
eigenvalue parameters k., o, and { of the surface-wave
eigenmode. We can solve at this point for the amplitude

constants of (31) to completely specify the eigenfields.
This technique has been implemented for the EJ}
surface-wave modes of the uniform rectangular dielectric
waveguide with uniform surround illustrated in the inset of
Fig. 12. The resultant dispersion characteristics are com-
pared with the results obtained by Goell [4], and excellent
agreement is observed, even in the near cutoff regime
where the approximate solutions obtained by Marcatili’s
method [3] and the EDC method [5] fail. The associated
eigenfield distributions are illustrated in Fig. 13, where the
expected confinement increase with guide dimensions is
evident. This technique was also implemented for the rib
waveguide shown in the inset of Fig. 14. FEigenvalues
obtained are compared with the results of the EDC method
for various film thicknesses; these compare favor-
ably for the principle Ej{ mode. In this case, the reflected
Green’s dyad was approximated by its residue series at the
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obtained from the transformed EFIE by the quasi-closed-form solution
technique.
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Fig. 14. Dispersion characteristics of Ejj surface-wave mode of a step-
index rectangular rib dielectric waveguide obtained from the trans-
formed EFIE by the quasi-closed-form solution technique.

poles of the integrand, and the branch integral contribu-
tion was neglected (see Section 1I). The adequacy of this
approximation is justified by the results presented; since
the residues yield a closed-form contribution, this ap-
proximation is potentially of great usefulness elsewhere.

V. CONCLUSIONS

We have presented an integral formulation for use in the
analysis of a broad class of integrated dielectric waveguid-
ing systems. In the case of axially uniform waveguides, the
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EFIE can be reduced in dimension by Fourier transform-
ing on the axial variable. Analysis of the transformed EFIE
in the complex transform variable plane leads to identifi-
cation of two components making up the total core field:
the surface-wave modes and the radiation field. The re-
sultant expression for the waveguide core field yields
surface-wave model excitation amplitudes in agreement
with the results of conventional excitation theory, as well
as a new formulation of the radiation field of the wave-
guide. We are also able to formulate a new criterion for
prediction of the excitation of Oliner’s leakage waves in the
layered background environment of the integrated wave-
guide.

The transformed EFIE has been used as a basis for
numerical solution for the surface waves supported by
rectangular strip and rib waveguides. Standard MoM solu-
tions for rectangular guides in a uniform surround yielded
good agreement with Goell’s results in the case of step-in-
dex guides, and yielded new results for parabolically graded
guides. A quasi-closed-form solution technique was also
applied to the EFIE, and numerical results obtained com-
pare favorably for the case of isolated step-index rectangu-
lar guides and step-index rib guides. .

Further numerical results are anticipated using varia-
tional techniques, as well as the Neumann series method.
Numerical and analytical results on the radiation field of
integrated waveguides are being pursued, and the applica-
tion of the three-dimensional EFIE to the interesting prob-
lem of truncated guides is also being explored.

APPENDIX
GREEN’S DYAD REFLECTION AND COUPLING COEFFICIENTS

The reflection and coupling coefficients appearing in the
Green’s dyad component integrals are detailed below. In
the following, we define

n n
= N-1_f —nv-1_0s
N=Ng'=-% Ny=N'=-*.

4 7
Coefficients in Green’s Dyad

TyR' Tye >
-2
1— R\, R! e~/

R, (A)=Rj +

T5RY Te 22
1+ R} R%e=20s"

R,(N) =R} +

T2(RYN2C, + C,) e 221
1+ R} R7 e 2710

C(A)=C,+

NA(NZ-1)T, 1+ Rie— o

c,(AN)= < .
1( ) 1_thfR;fe—2pft
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