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Abstract —A polarization integraf equation is advanced for use in the

conceptual and numerical analysis of a broad class of integrated dielectric

waveguiding systems. The equation is applied to axiafly uniform wave-

gnides, in which case the axial integral becomes convolutional in nature,

prompting a Fourier transform on that variable. Inversion of the trans-

formed guiding region field, aided by complex analysis, allows identifica-

tion of two components of that field the surface-wave modes and the

radiation field. These are found in terms of the sources exciting the system,

leading to a new formulation for the excitation of such wavegoides.

Analysis of the behavior of the kernel of the transformed integral equation

in the complex plane leads to a generaf criterion for snrface-wave leakage

from the guiding region. Numerical results for the propagation characteris-

tics of step- and the graded-index rectangular strip and rib wavegnides are

obtained from the integral equation by application of the method of

moments and by a quasi-closed-form solution technique. These results are

compared to those of other formulations. Further application of the integral

equation is discussed, and severaf promising areas for further study are

identified.

I. INTRODUCTION

T HE PRACTICAL APPLICATION of dielectric wave-

guides in millimeter-wave integrated circuits depends

critically on the propagation characteristics of these wave-

guides. For this reason, there has been enduring interest in

methods of determining these characteristics for practical

dielectric waveguiding structures. Exact solutions for the

fields in dielectric waveguides exist for few structures, such

as the asymmetric slab waveguide [1] and uniformly clad

dielectric fibers of circular and elliptic cross section [2].

The boundary conditions at the core/surround interface

for other structures are inseparable, rendering differentird

formulations of the problem insolvable.

Differential formulations have provided the basis for

approximate solutions, notably for surface waves along

rectangular step-index waveguides. The technique used in

the classic study by Marcatili [3] yields good results with

minimal effort for large step-index rectangular guides. A

potentially exact solution for this structure has been ob-
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tained by Goell [4]; however, time and storage considera-

tions yield approximate numerical results. A similar diffi-

culty holds for the potentially exact mode-matching tech-

nique of Peng and Oliner et al. [5], [6]. The radiation field

of the guide is addressed in that work, but the spectrum of

radiation eigenvalues is quantized by the introduction of

distant conducting boundaries, leading to approximate re-

sults. Shortcomings common to the above-mentioned

analyses are their inability to incorporate core grading and

inapplicability y to structures of more general shape. These

considerations are of practical importance since waveguid-

ing characteristics may improve with transverse core grad-

ing, and fabrication technology renders the construction of

rectangular step-index waveguides difficult at best.

In this paper, we utilize a polarization integral equation

(EFIE) to analyze a broad class of integrated dieletric

waveguides. This integral equation is related to that de-

rived by Katsenelenbaum [7] and used by Livesay and

Chen [8]. It was developed by Johnson and Nyquist in [9]

and provides a conceptually exact formulation of the elec-

tric field in a broad class of integrated waveguiding sys-

tems. The integral formulation provides several advantages

over conventional differential formulations. Boundary con-

ditions are incorporated in a general manner into the

dyadic Green’s function kernel; thus, physical phenomena

such as mode leakage which may be obscured in conven-

tional formulations (see [5] and [6]) can be treated. The

formulation is also valid for arbitrarily-graded waveguides

of arbitrary shape.

The remainder of this paper is organized into four

sections. In Section H, we briefly sketch the development

of the polarization integral equation and present the dyadic

Green’s function which forms the kernel of the equation.

We then specialize the integral equation to axially uniform

waveguides by Fourier transforming on the axial variable.

In Section III, we develop an excitation theory for axially

uniform integrated dielectric waveguides. This theory is

based on formal Fourier inversion of the unknown trans-

formed waveguide field. Analysis of the EFIE in the com-

plex transform variable plane allows characterization of the

complete modal spectral of this class of waveguides: Surface

waves are associated with a residue series at poles enclosed

by the inversion contour, and the radiation field is associ-

ated with branch integrals required by the presence of
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multivalued parameters in the integrand. The surface waves

are shown to satisfy the homogeneous form of the trans-

formed EFIE, and the radiation field is shown to consist of

a two-dimensional superposition of spectral components

which satisfy a forced EFIE. This analysis provides the

excitation amplitudes of the surface-wave modes and the

radiation field spectral components in terms of the incident

excitatory field. Another important result is the ability, of

this analysis to describe the physical phenomenon of guided

mode leakage [5], [6]. In Section IV, we apply the integral

equation to the determination of propagation characteris-

tics of step- and graded-index rectangular waveguides. Two

techniques are used: we implement a moment method

solution to the integral equation, and we also use a quasi-

closed-form solution technique. Numerical results are pre-

sented and compared to those of other formulations. We

close, in Section V, with a discussion of our applications of

the polarization integral equation, and several promising

areas for further study are identified.

II. MATHEMATICAL FORMULATION

In this section, we present a polarization electric-field

integral equation for a generalized integrated dielectric

waveguiding system. This integral equation provides the

mathematical formulation for the remainder of this paper.

The physical system that the EFIE is applicable to is

depicted in Fig. 1. It consists of an inhomogeneous dielec-

tric waveguide core located in the top layer of a three-layer

uniform dielectric background region intended to represent

the substrate, film, and cover regions of typical integrated

dielectric waveguides.+ Excitation is provided by an im-

pressed electric field E’ maintained by current F = ju~ =

associated with a primary polarization source ~ e immersed

in the cover region of the layered background. That im-

pressed field is scattered by the inliomogeneous guiding

region, due to the contrast tln 2(7) = n 2( ?) – n ~ of its re-

fractive index agains. that of the uniform cover, resulting

in a scattered field E‘. The total field at any point in the

system is ~ = ~‘ + l?’. The scattered field is maintained by

the equivalent induced polarization ~,~ = 8n 2(7)60E(?).

Solution of this scattering problem requires the determina-

tion of ~ at all points 7 = V, where V is that region where

8n 2 # O. The polarization sources radiate in the presence of

the tri-layered cover/film/substrate background region;

treatment of this problem involves the electromagnetic of

layered media.

The field maintained by the total effective polarization

in the cover region can be expressed through electric

Hertzian potentials by a generalization of Sornmerfeld’s

classic method [10]. The result is

cwer medium, ne
m

.

Fig. 1. Generalized integrated dielectric waveguide consisting of an
arbitrarily graded waveguiding region adjacent to a film/cover inter-
face over a uniform substrate.

~‘, ~. is the scattered field maintained by ~~~ = an 2e~l?,

and G N a Hertzian potential Greeri’s dyadic. Rearranging

(1) leads to an EFIE for the f~ld maintained in the

waveguide by the impressed field E‘ as .

An alternative form of EFIE, (2) is useful in analytical

develo~ments; it is obtained in terms of an electric Green’s

dyad G.. If the differential~perator in (2) is passed through

the integral to operate on G, the singularity of the Hertziah

potential Green’s dyad is rendered nonintegrable hnd iri-

tegration must be performed in the principal value sens(e.

This results in the introduction of a nonphysical source due

to exclusion of the principal volume which must be subse-

quently subtracted by use of a depolarizing dyad ~ [11].

These considerations lead to the definition of the electric

Green’s dyad

An alternative form of the EFIE for ~ excited by ~’ is

thus

7= v. (4)

The Hertzian potential Green’s+dyadHdecomposes into a

principal and reflected part (?= GP + G’, where

~p(717’) =~Gp(7\7’)

(? ’(717’)= 2Gf2 + }
( )

&G:k + G~j + ~ G:2 + 2G:2,,

(5)

(1) Potential components tangential to background interfaces

excited by tangential sources are described through G; and

where kl = n ~ko for 1= c, ~, or ,s for the cover, film, or normal potentials due to normal sources are obtained from

substrate regions, respectively, and k. is the free-space G{, while the coupling component G: yields the normal

wavenumber. Here ~ i is the impressed field maintained by potential maintained by tangential sources. The various
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Fig. 2. Axially uniform integrated dielectric waveguide in a tn-layered
background environment.

components of the Green’s dyad are found in terms of

Sommerfeld integrals

G;( 717’)m ~jX(i-7’)e-p=(y +y’)

G:( 717’) =j:j:; ,(2=)2PC d2A (6)

G:(?I?’) ‘m C(A)

where ~ = ~i +{2, A’=<’ +{2, d2A = d.$d~, and p; = A’

– kf for 1 = c, f, or s. The reflection coefficients R, and

R ~ are associated with tangential and normal potential

components, while C is a coupling coefficient; these coeffi-

cients depend on the parameters of the cover/film/sub-

strate background in a complicated manner, as indicated in

the accompanying Appendix.

In case of an axially uniform guide such as that shown in

Fig. 2, the refractive index contrast factor is a function of

transverse position only, or tln 2(7)= 8n 2( ~) with ~ =X2 +

yj. We also note that f?(717’) = ~(~l~; z – z’); in this

case, the axial integral in (2) is convolutional in nature,

prompting a Fourier transformation on that variable. This

leads to an EFIE for the transformed field Z of an axially

uniform waveguide due to a transformed impressed field .?

;Ecs (7)

where { is the transform variable and Y = Vt + j{2.

The transformed Green’s dyad ~r decomposes as previ-

ously, with

Integral representations of the scalar components are given

with A2=~2+{2, yj={’–k~,andp~=~’–k~ forl=

c, f, s.

The integrals in (9) can be transformed to alternative

forms by complex plane analysis. For fixed {, the p~

introduce branch point singularities in the complex f plane.

If the real axis integrals are closed along semicircles of

infinite radius in the upper or lower half planes, it is

necessary to detour along branch cuts emanating from

points + jy~; these cuts follow the usual hyperbolic paths

in the $ plane (see [12], [13]) to guarantee the vanishing of

contributions from the infinite semicircular path. It can be

shown [12] that the coefficients R ~, R ~, and C in (9) are

singular at such ~ where the p, correspond to TE and TM

surf ace-wave eigenvalues of the background asymmetric

slab waveguide (see discussion in Section III). These con-

siderations lead to useful alternative representations of the

Green’s function components in terms of a residue series at

these poles plus branch integral contributions.

It is convenient in conceptual developments to exploit a

modified version of EFIE (7). An alternative transformed

where the transformed elec~ric Green’s dyad+is ~,c( ~1j5’) =

P. V.(k~ +ti~.)~{(~l~)+l~(~– ~) and 1 is the two-

dimensional depolarizing dyad [11].

III. TRANSFORM PLANE ANALYSIS

In this section, we consider the excitation of axially

uniform integrated dielectric waveguides. The analysis is

based on formal Fourier inversion of the transformed total

field in the waveguide.

The total field in the core of an axially uniform in-

tegrated waveguide is given by

where Z( @,{) satisfies (10). We will perform this inversion

with the aid of complex analysis. Modify the real line

integral in (11) to form a closed path in the complex {

plane. An infinite semicircular contour %?~ extends into

the upper or lower half plane depending on the sign of

z – z‘, as illustrated in Fig. 3. Since Z is the solution of

(10), it shares the { plane branch point singularities of ,ljer

arising from the pl = ($2 + {2 – kf)112 for 1= c or s (kf is

not implicated since the integrands of ~~ are even in pf;
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Fig. 3. Singularities of the transformed core field and the deformed
inversion contour to aid in identification of the model spectrum of an
integrated wavegnide.

see the Appendix). We choose hyperbolic branch cuts

eminating from the branch points { = + k, to assure con-

vergence along %@. The contour may also enclose pole

singularities of .? at { = {P. We thus have

Equation (12) gives a natural decomposition of the field in

an axially invariant integrated dielectric waveguide. The

residue series of (12) is a sum of surface-wave modes of the

guide, complete with excitation amplitudes depending on

the incident excitatory field or current. These surface waves

satisfy the homogeneous form of the EFIE (10), as we

would expect by the conventional definition of surface

waves. The branch integral terms in (12) are a continuous

superposition of forced radiation field spectral components

of the waveguide. They involve spectral excitation ampli-

tudes depending on the incident excitatory field or current

and are the subject of a later discussion. Closed-form

solutions to the integral equation (10) have been obtained

for TE and TM fields supported by the asymmetric slab

waveguide [12]; subsequent application of the complex

plane analysis described above leads to replication of the

surface-wave modes and radiation field, including all exci-

tation amplitudes, as detailed by Marcuse [1].

We now show that the terms in residue series of (12)

satisfy the homogeneous form of the transformed EFIE

(10). Suppose that the inversion contour of Fig. 3 encloses

a simple pole of the transformed field at {P. Near this pole,

the transformed field has the form .?(~, {) = apZp(~)

({– {p)- 1; substitution into (10) gives

{J 8n2(~)
aP({–{P)-l .?P(P)– ~2 %?{(w)

Cs ,

“ZP(P’)CM’} =?(7,; ). (13)

Taking the limit as f ~ (.. and noting that .? is arbitrarv.

we conclude that 2P satisfies

;’Jp)_J Wp
K?(,(m’)”%m ~~’=o,

es nC

so that 2P is a surface wave of the waveguide with propa-

gation constant {P. We now show that Z has the form given

above when {P is an eigenvalue of the surface-wave mode

EFIE (14); this demonstration allows evaluation of the

excitation amplitude coefficient up. Operate on (10) with

the linear integral operator ~P, defined by

S,{. } =~s+?,(~).{.}(is (15)
c

and use the reciprocal property of the Green’s dyad (see

[13]) to get

For ~ near {P, we can approximate the Green’s dyad by the

first two terms in its Taylor series expansion about (P.

Substitution into (16) and taking the limit J -+ (P gives

(17)

Since Z’ is arbitrary, we conclude that Z(F, {) = aP.ZP(~)

({– {P) -1 for { near l’P. This gives

1

J

f3n2(@)
ap=— — ~~pm”~i(i$jqw (18)

Cp Cs ~

where Cp is a normalization constant. This has the same

form as the results of conventional excitation theory [1,3],

[14]. We can derive an alternate form for the excitation

amplitude in terms of the impressed current maintaining
the excitatory field (see (22))

(19)

Now ? = ja~’, and we denote .?Oe‘J{PZ= ~~, so the result
-P . .
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can be written

a,= -*~:(w+(w (20)

which is again seen to be in the same form as the result of

conventional excitation theory.

We have made the identification of the branch integral

in (12) with the radiation field of the waveguide. That is

where .? satisfies the forced EFIE (12) for J along the

branch contour %’~. Spectral components of the radiation

field can be decomposed by appropriate decomposition of

the impressed field .?

(22)

where CS@ is the infinite cross section, I~1 < m ,~e is the

transform of the impressed polarization, and %g is the

integrand in the integral representation of ~er. A unit

dyadic polarization point source at @cation @“ of spatial,+
frequency ~ gives an impressed field ‘Yg/n~co; t& excites a

dyadic radiation-field spectral component 11(~1~’; ~, {)

which satisfies the following form of the transformed EFIE:

—— ‘g(p~::g’ ‘) . (23)
c

Then the total radiation field becomes

‘UD(~!z) = - &/@die’Cz~ d<
B -w

“Jgm”; $()”7(F”J) ds”- (24)

This result verifies the conjecture [14] that the radiation

field of general open boundary waveguide consists of a

two-dimensional superposition of spectral components ex-
cited by the transformed impressed polarization jie.

We now turn to the phenomenon of surface-wave leakage

from integrated dielectric waveguides. As noted by Peng

and Oliner et al. [5], [6], the tri-layered background struc-

ture of Fig. 1 is itself a dielectric waveguide. The physical

explanation of surface-wave leakage is the coupling of

guided modes of the core to guided modes of the asymmet-

ric slab background structure. Under certain conditions,

such coupling can occur, resulting in energy transfer (or

leakage) from surface waves of the core to surface waves of

the background structure; these waves guide energy away

from the axis of the waveguide. This phenomenon mani-

Complex
lm{~}

T
arg(~p) - 7fj2+@++e-Jf2

~ plane _ ~-

0+

Fig. 4. Complex ( plane construction defining arguments of the re-
flected Green’s dyad residue series.

fests itself in our mathematical formulation through the

presence of simple pole singularities in the reflection and

coupling coefficients in the transformed reflected Green’s

dyad for complex ~. These singularities occur at those f

that cause A =&* + K2 to correspond with an eigenvalue

of the TE or TM characteristic equation of the background

asymmetric slab guide.

It can be shown that the coefficients R, and C become

singular when the parameters pC, p$, and pf satisfy the

equation

P/( Ps+Pc)
tanh pf =

P; + PSPC

and the coefficients R ~ and C become singular when

(25)

(26)

which are the characteristic equations of TE and TM

surface waves in the asymmetric slab [1]. Let AP denote a

surface-wave eigenvalue of the background structure; Ap

must lie in the fourth quadrant of the complex J plane so

that exp( – j~pr ) represents a decaying outward-propagat-

ing wave. The spatial frequency ~ corresponding to this

eigenvalue is $2 = A; – J 2. The factor exp( j~ lx – x’1) oc-

curring in the residue series contributions to ~[ implies
Im{&P} >0, we we write fP = jfi– ~p X~+ ~P. From

the construction of Fig. 4, we see that in the low-loss limit

we have two cases

AP<Re{{} arg{&P}= m/2. (27)

Then the factor exp(jfPlx – x’1) in ~~ becomes

eJ~plx–x’l = (e–Jl$pllX–X’l

e–ltpllx–x’l

(28)

for the two cases. This faqtor represents a wave propa-

gating in the x-direction in the first case, and an exponen-

tial decay in the x-direction in the second case. The first

case is the regime of leaky modes, in which a surface wave

of the core couples into a surface wave of the background

structure. The second case is the regime of purely guided

modes, where no coupling occurs and the mode is guided
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Re{ c } ! ~p regime of purely guided waves

Re( ~ } ~ AP regime of leatcmg surface waves
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I.M!zL
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Core
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F
F!lm layer

2

x-J
+m

~ . ~an-l Re{C)

Itpl

Fig. 5. Surface-wave leakage and leakage angle for integrated dielectric
waveguides.

along the waveguide axis. This situation is illustrated in

Fig. 5

IV. NUMERICAL RESULTS

In this section, we present results of the numerical

solution of EFIE (14) for the eigenmodes of step-index and

graded rectangular strip and rib waveguides. Two tech-

niques are utilized, and the results of each are compared to

the results of other formulations of the problem.

If the rectangular components u =x, y, z of the un-

known field are expanded in a basis set { fn } and sub-

stituted into the surface-wave mode EFIE (14), the spatial

integrals can be performed to give

~a”n(f)li(p, {)=o, p=cs. (29)
u

Application of a testing operator consisting of dot multi-

plication by a vector testing function and integration over

the guiding region cross section gives the MoM system

~ f a“n(r)A~m(() =0,
u n=l

Ci=x, y,z, ~=l,. . . , N (30)

where the MoM matrix elements are in terms of the

spectral integrals which occur in the expressions for the

transformed Green’s dyad. Solutions ] =(. of (30) are

obtained as the roots of det[A~~(r)] = O for the n th

surf ace-wave eigenmode; expansion coefficients au. are

subsequently determined by deleting one of the dependent

equations in system (30), equating the corresponding coef-

ficient to unity, and solving the resulting inhomogeneous

system for the remaining coefficients.

“=1,5 NX=3

nc=l, o NY=5

o/b=2,0

40M nmtrlx filled co 1%
Integ rat Ion occurocy

n.-
-1

0 i,, ,,d , ! 1
OO.O 1.0 2.0 3.0 4.0

norm] lzed he]ght (2wA) (n2-n~) l/2

Fig. 6. MoM solution to transformed EFIE for dispersion characteris-

tics of Efi surface-wave mode supported by a step-index dielectric
rectarsgul& waveguide.

. .

E!I mode

n=1,5 N,=3 IIcJ40)0[,1, fll ied
“C=l, O NY-5 to lx I ntewot !on

0,,”,., ”
olb=2,0

i-

B ‘e J.OP,).Ox
0, 0,0454
1, 0,0138
4, 0,0014

0,8

16

:,~
0.2 0.4 0.6 0.8 1.0

normal lzed Y.cowdln.te ylb

Fig. 7. MoM solution to transformed EFIE for eigenfield distribution of

.E:I surface-wave mode supported by a step-index dielectric rectangular

waveguide.

The standard MoM solution was implemented by using

a pulse function basis and delta functions for testing (point
matching). We first present the MoM results for Efl surface

waves supported by the isolated rectangular step-indlex

waveguide illustrated in the inset of Fig. 6. The dispersion

characteristics displayed in that figure agree well with those

of Goell’s mode-matching solution [4]. Fig. 7 shows tlhe

resultant dominant-field component eX distribution in tlhe

guiding region for several guide dimensions. The next

example is that of the Efl surface-wave modes supported

by the same waveguide. Once again the dispersion char-

acteristics obtained compare favorably with those of Goell,

as illustrated in Fig. 8, and the resultant dominant-field

component eY inside the guiding region is shown in Fig. 9.

Our final MoM example is that of E/l surface-wave modes
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Fig. 8. MoM solution to transformed EFIE for dispersion characteri-
stics of Efl surface-wave mode supported by a step-index dielectric
rectangular waveguide.
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Fig. 9. MoMsolution totransformed EFIEfor eigenfield distfibutionof
E;l surface.wave mode supported byastep-index dielectric rect~gular

waveguide.

supported by a graded-index rectangular waveguide in a

uniform surround. Here, the refractive index varies in a

parabolic fashion along the y-direction as indicated in Fig.

10. The resultant dispersion characteristics are compared to

Goell’s results for a step-index configuration of a similar

contrast. The effect of parabolic core grading on the propa-

gation characteristics of this guide is evident. The domi-

nant-field component distribution in the guide is shown in

Fig. 11. Note the anomalous distribution versus Y for

guides of low contrast. This may indicate an unexplained

physical phenomenon, or may be a result of numerical

integration inaccuracy (1-percent accuracy was used in all

cases).

Quasi-closed-form solutions to the surface-wave mode

EFIE (14) can be obtained for the surface waves supported

by step-index waveguides with rectilinear boundaries (e.g.,

the strip and rib configurations). The index contrast is

constant within the guiding region and vanishes outside

t’ E~l mode
‘c

II(@l ‘no- 4(n0-ncl (y/b-0,5)2
;~~ “c
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Fig. 10. MoM solution to transformed EFIE for dispersion characteri-

stics of E<l surface-wave mode supported by a graded-index (parabolic
along y) dielectric rectangular waveguide.
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Fig, 11. MoM solution to transformed EFIE for eigenfield drstributlon
of E~l surface-wave mode supported by a graded-index (parabolic

along .V) dlelectnc rectangular waveguide.

that region. Solutions to Maxwell’s equations are con-

structed in rectangular coordinates by exploiting conven-

tional guided wave theory [13], resulting in the longitudinal

TE and TM eigenmodes

ez@y)=(;:&)[c1 Cos KYY + q sin KYY]

hz(x, y)= { )[~~~~ C,cosu,y + C, sinu,y] (31)
x

in terms of four unknown amplitudes and three unknown

eigenvalue parameters (KY and UY are specified by K: + K;

= u 2 + u 2 = lc’ – 12). Transverse-field components are ob-
tain~d fr~m (31) in the usual manner. Requiring satisfac-
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Fig. 12. Dispersion characteristics of 11~1 surface-wave mode of a step-
index rectangular dielectric waveguide obtained from the transformed
EFIE by the quasi-closed-form solution technique.

tion of EFIE, (14) leads to

i CnW(”)(KX,~X,f,x,~)=O for ~=x, y,z,
~=1

7=CS. (32)

The W. are given by Sommerfeld integrals following

closed-form integration on the primed spatial variables.

Since this formulation is based on a potentially exact

solution to Maxwell’s equations, the component equations

(32) can be matched at four points within the waveguide,

leading to a system of three homogeneous matrix equa-

tions. These equations can be solved simultaneously (e.g.,

by the three-dimensional Newton’s method) to yield the

eigenvalue parameters Kx, ox, and { of the surface-wave

eigenmode. We can solve at this point for the amplitude

constants of (31) to completely specify the eigenfields.

This technique has been implemented for the E~l

surface-wave modes of the uniform rectangular dielectric

waveguide with uniform surround illustrated in the inset of

Fig. 12. The resultant dispersion characteristics are com-

pared with the results obtained by Goell [4], and excellent

agreement is observed, even in the near cutoff regime

where the approximate solutions obtained by Marcatili’s

method [3] and the EDC method [5] fail. The associated

eigenfield distributions are illustrated in Fig. 13, where the

expected confinement increase with guide dimensions is

evident. This technique was also implemented for the rib

waveguide shown in the inset of Fig. 14. Eigenvalues

obtained are compared with the results of the EDC method

for various film thicknesses; these compare favor-

ably for the principle E:l mode. In this case, the reflected

Green’s dyad was approximated by its residue series at the

913

rmmd lzd x-coordinate xJZ normol lzeo y-coordinate Ylb

Fig. 13. Distribution of the dominant-field component eX(x, y) for the
Efi surface-wave mode of a step-index rectangular dielectric waveguide
obtained from the transformed EFIE by the quasi-closed-form solution
technique.
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Fig. 14. Dispersion characteristics of Efl surface-wave mode of a step-
index rectangular rib dielectric waveguide obtained from the trazls-
formed EFIE by the quasi-closed-form solution technique.

poles of the integrand, and the branch integral contribu-

tion was neglected (see Section H). The adequacy of this

approximation is justified by the results presented; since

the residues yield a closed-form contribution, this ap-
proximation is potentially of great usefulness elsewhere.

V. CONCLUSIONS

We have presented an integral formulation for use in the

analysis of a broad class of integrated dielectric waveguid-

ing systems. In the case of axially uniform waveguides, the
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EFIE can be reduced in dimension by Fourier transform- Factors Associated with the Cover/Film Interface

ing on the axial variable. Analysis of the transformed EFIE

in the complex transform variable plane leads to identifi-
R;C(A) = –R:f(A)= = ~;c(~) =

xS;Pf – P.
cation of two components making up the total core field:

the surface-wave modes and the radiation field. The re-
Pc + Pf %;pf + P.

sultant expression for the waveguide core field yields

surface-wave model excitation amplitudes in agreement ~;c(~) – 2Nzpf 2N;P.
T$(A)=—

with the results of conventional excitation theory, as well P.+ Pf P.+ Pf

as a new formulation of the radiation field of the wave-

guide. We are also able to formulate a new criterion for 2Pf
%(A)=

2P.
T;(A) =

prediction of the excitation of Oliner’s leakage waves in the w;Pf + P. Nf:Pc + Pf “
layered background environment of the integrated wave-

guide.

The transformed EFIE has been used as a basis for
Factors Associated with the Film /Substrate Interface

numerical solution for the surface waves supported by

rectangular strip and rib waveguides. Standard MoM solu-

tions for rectangular guides in a uniform surround yielded

good agreement with Goell’s results in the case of step-in-

dex guides, and yielded new results for parabolically graded

guides. A quasi-closed-form solution technique was also

applied to the EFIE, and numerical results obtained com-

pare favorably for the case of isolated step-index rectangu-

lar guides and step-index rib guides.

Further numerical results are anticipated using varia-

tional techniques, as well as the Neumann series method.

Numerical and analytical results on the radiation field of [1]

integrated waveguides are being pursued, and the applica-

tion of the three-dimensional EFIE to the interesting prob-
[2]

lem of truncated guides is also being explored.

APPENDIX

GREEN’S DYAD REFLECTION AND COUPLING COEFFICIENTS
[3]

The reflection and coupling coefficients appearing in the

Green’s dyad component integrals are detailed below. In
[4]

the following, we define
[5]

Nfc=Nc~l=~N,f=Nf;l=>
nc nf”

Coefficients in Green’s Dyad

Tc~R~f Tf~e - 2Pft
Rn(A)=R;c+

1 + RJcR~fe-2J’f2

C(A) =C1+ q(R;f%C1+ C2)e-2P,Z

1 -t R~cR~fe-2pf’

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

N/?(N$–l)TJf 1 + R~fe – ZPI’
C,(A) =

[14]

Nf:pc + Pf
~ – R~fR~fe-2Pft “
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